

Biopower CHP: A Great Duo, Homework Required

David Sjoding Northwest Clean Energy Application Center

Pacific West BIOMASS Conference & Expo January 13, 2010

Hmm – Maybe it's a "Great Quad"?

Lets count:

- Steam from boiler
- Power generation
- Carbon credits
- Baseload renewable power

Some history

Forest products:

- 1980s Some mills installed CHP
- Gave a competitive advantage through the years – Control of power costs
- Many mills did not install CHP

Anaerobic digestion

- 1970 to 1990s - Failure rate of 50%

Conclusion – Homework required

And then

Energy price increases:

- 2001-2002 "Perfect Storm"
- CA deregulation, northwest drought
- Natural gas prices higher & volatile (the gas bubble was over)
- Energy costs killing out our industrial base

Anaerobic digestion

– R&D to fix the technology - \$5 million at WSU

Now – The time has come

Biopower CHP:

– WA Stimulus (ARRA): 120 MW funded (\$30.5 million) & 201 MW under development

– MT Stimulus (ARRA): 8 Technical studies funded

AK Renewable Energy Fund: \$125 million
 Round 1 & 2 with 20 CHP projects; RFP for
 Round 3 has closed (\$50 million)

- OR: 50% BETC, SELP loans includes renewable CHP, the "Unwritten Policy"

Anaerobic digestion

– Dairy Digesters: 9 revenue streams

Homework I

Utilities:

- We have a checkerboard of attitudes
- Varies by state and within states
- Depends on laws, policy, utility regulations
- A key report: Distributed Generation in
 Oregon: Overview, Regulatory Barriers and
 Recommendations

http://chpcenternw.org/NwChpDocs/DistGenInOrego n_Overview_RegBarriers_Reccomendations.pdf

Standby Rates for Customer-Sited
 Resources from EPA CHP Partnership

Need a good Power Purchase Agreement –
 10 years plus

Homework II

Environmental:

- Burning slash piles or to the mill?
- Beyond Waste or to the landfill?
- Output-Based Emissions or Input-Based

http://chpcenternw.org/Library.aspx#environ ment

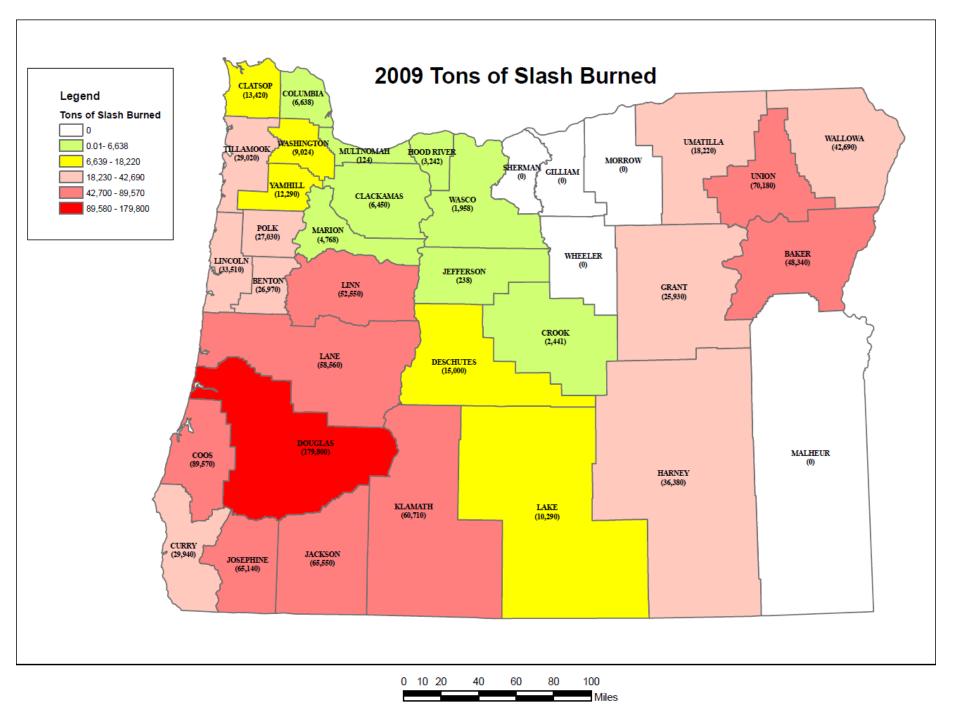
 A number of air emissions studies under way

Homework III

Climate change:

– Can you sell carbon credits and renewable energy credits?

 Yes, if you have a methane/fossil energy reduction pathway – Did you turn off the fossil energy boiler or shut down dairy lagoon


- State laws can be unclear
- Value not to be missed Even if bundled
- Selling Carbon Offsets from your Clean
 Energy Project

http://www.chpcenternw.org/NwChpDocs/SellingCarbo nOffsets.pdf

Hog fuel prices – It's not the free fuel it used to be - IV

An investment grade study of supply is needed or you own it:

- Who else is moving forward?
- WA Olympic Peninsula example
- How local is it?
- We need to maximize what we have
 - Slash is moving to the mills
 - BCAP and tax incentives

Bioenergy Policy choices

Which policy tectonic plate will win? Do we maximize

- Biofuel production 36 BGY? Get out of middle east
- Biopower CHP production RPS/RES -
- Pellets and torrefaction cubes for Asia and Europe
- Biochar Carbon negative and healthy soils
- Maximize rural economic development Which end use yields the most rural jobs, And, who owns?
- Sustainability is an overriding key value Right?
- What about compost and beauty bark?

Moisture – The target

- Major efficiency gains to reduce moisture content of the fuel
- Biomass Drying and Dewatering for Clean Heat and Power

http://www.chpcenternw.org/NwChpDoc s/BiomassDryingAndDewateringForClea nHeatAndPower.pdf

Solution: Efficiency gains: Getting more out of the fuel

- CHP itself is an efficiency gain over standalone power generation
- What about the mill's waste heat?
- Survey it Can it be recycled?
- We have plans for this waste heat
- A number of old and newer technologies

Fuel Drying

- Significantly improves the efficiency of the boiler or gasifier.
- For boiler:
 - 5% to 15% improvements in efficiency (Boiler is not an efficient dryer, so dry fuel before boiler.)
 - 50% to 60% more steam production
- Improves combustion
- Reduces air emissions

The Key is Heat Recovery

- Heat recovery is key to a cost effective dryer project.
- Recover flue gas of power boiler or gasifier.
- Recover heat from other waste heat sources
- Recover heat from dryer exhaust.

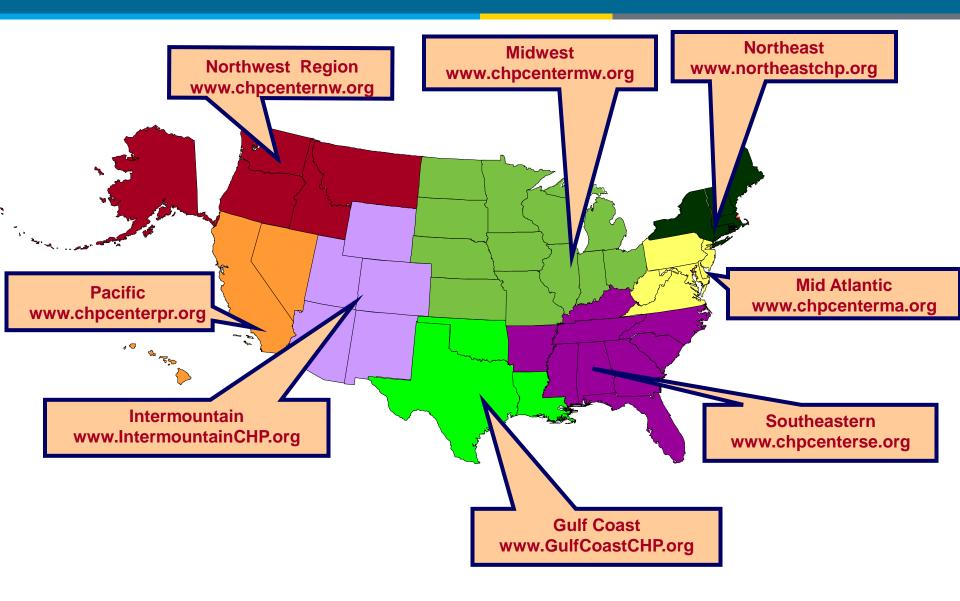
Conclusion

- Economic advantage Make your own power on-site or sell it/wheel it
- Long-term feedstock supply is crucial
- Use the feedstock efficiently
- BIOMASS CHP A WINNER!

Northwest Clean Energy Application Center

About the Center

- A multi-state effort AK, ID, MT, OR & WA
 - WSU Extension Energy Program serves as lead
 - 100 plus Regional CHP projects totaling over 1,300 MWc
 - 94% industrial projects
 - Technical assistance information, reports and case studies
 - Problem solving & trouble shooting
 - Website <u>www.chpcenternw.org</u>
 - Support of regional & state CHP initiatives



US DOE Clean Energy Application Centers

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

